Wingless: developmentally important genes that respond adversely to smoking.

نویسندگان

  • Denise Al Alam
  • David Warburton
چکیده

It has been observed by many authors that cigarette smoking results in long standing epithelial damage and interstitial inflammation within the lung. Quitting strongly reduces the risk of smoking associated lung diseases such as chronic obstructive pulmonary disease (COPD), but the underlying inflammation of the airways does not go away completely even after quitting smoking. So, a critical question for the pulmonary physician is: why is smoking cigarettes so bad for the airway lining and why are the inflammatory effects so long lasting? Heijink et al, working with cultures of human primary bronchial epithelial cell (PBEC) biopsy specimens, now come with an intriguing new finding that cigarette smoking has significant adverse affects on certain members of the Wingless family, entraining a feed forward mechanism that increases epithelial cytokine production in response to cigarette smoke extract. The Wingless family comprises an important class of developmentally critical signalling ligands that conduct signals from the cell surface through the cytoplasm to the nucleus, where they activate coordinated sets of genes. These genes in turn regulate cell–cell communication in the embryonic through the adult stages of human and animal development and continue to be very important in airway epithelial differentiation as well as during airway epithelial healing (see Warburton et al for a recent review). The colourful name Wingless was coined to describe the loss of function phenotype of fruit flies that lack this gene (they have no wings). Fruit fly geneticists, being somewhat perverse, always delight in giving active voice picaresque names to their loss of function phenotypes. Thus, conversely, signalling by Wingless ligands actually induces the correct differentiation of epithelial cells that form the wing structures in flies and this basic developmental function is conserved, but has been adapted during evolution all the way up to mice and humans, wherein Wingless genes play important roles in developmental branching of the airways. Because humans have undergone many gene reduplication events since they diverged from flies during evolution, there are several isoform copies of Wingless genes in the human genome, with multiple overlapping functions in tissue differentiation. These genes were also discovered independently at about the same time to be important in human breast cancer and therein were termed the Int family of genes. So, in the current gene nomenclature, Wingless plus Int was elided to Wingless (WNT). The human WNT family of signalling ligands directs a complex network of downstream signalling events including what is termed a ‘canonical’ pathway as well as a ‘non-canonical’ pathway. In the canonical pathway WNT proteins bind to Frizzled (FZD) receptors and signal via second messengers to protect an important substance called β-catenin from proteolytic degradation; β-catenin is a powerfully pleiotropic transcriptional coregulator that sometimes enhances or sometimes represses transcription of many genes that promote tissue repair and regeneration such as growth factors, metalloproteinases and cytokines. Meanwhile, the non-canonical branch of WNT signalling is β-catenin independent and can induce signalling pathways involved in regulating cell survival, immune responses and cytoskeletal proteins such as p38, calcium ion concentrations and RhoA. Several WNT pathway regulators have been reported, including Dikkopf proteins, WISE, secreted FZD receptor proteins, the Wnt inhibitory factor (WIF) and the R-spondin family. Canonical Wnt ligands comprise Wnt1, Wnt2, Wnt3a and Wnt10b, while other Wnt ligands such as Wnt5a and Wnt11 only mediate β-catenin-independent transcriptional activation. During lung development, Wnt signalling determines cell proliferation, differentiation and lineage commitment. Several Wnt proteins and receptors are expressed in the mouse embryonic lung at different developmental stages. In addition, using three different Wnt reporters, we have shown that Wnt signalling is active in both lung epithelium and mesenchyme as well as in airway smooth muscle cells. Therefore, one would expect that any alteration of Wnt signalling would affect the development of at least one of these compartments of the lung. Interestingly, both inhibition and excessive activation of Wnt signalling lead to abnormal lung development in mice. Recent studies reported the presence and the spatio-temporal expression of several WNT ligands (WNT7b, WNT2), receptors (FZD4, FZD7), regulators and signal transducers (B-CATENIN, AXIN2, APC) in human embryonic lung, but functional studies in the developing human lung are missing thus far. Furthermore, we showed that Wnt signalling is strongly activated following naphthalene injury of bronchial epithelium and during injury repair in mice. However, recently, more light was shed on the role of this developmentally important pathway in human lung disease. Excessive WNTsignalling has been implicated in pulmonary fibrosis as well as in some types of lung cancer, including smoke-induced lung cancer (see review by Konigshoff and Eickelberg). Moreover, genome-wide association studies have revealed a clear association between WNT pathway genes and asthma in children. Similar studies in idiopathic pulmonary arterial hypertension showed differential expression of components of both the canonical and noncanonical WNT pathways in patient’s vessels, versus transplant donor vessels, microdissected by laser capture. Thus, WNT signalling seems to be increasingly identified as a potential target in certain intractable forms of lung disease. Studies in mice exposed to smoke from 3 weeks before conception until delivery showed that maternal smoke exposure strikingly decreased Wnt signalling pathway genes (β-catenin, Fzd7) as well as Foxa2 in the lungs of the neonatal offspring, thus leading to impaired alveolarisation and abnormal lung development. Moreover, both a decrease of the Wnt target genes β-catenin and TCF7L1 and an increase of the Wnt inhibitor SFRP2 were reported in bronchial epithelial cells of both ‘healthy’ and COPD smokers. In addition, decreased expression of canonical Wnt signalling targets was observed in experimental mouse models of emphysema induced by elastase instillation or by smoke exposure. Taken together, these studies suggest therefore that canonical Wnt pathway Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California 90027, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-47: Effect of Blastocoelic Fluid Reduction on Quality and Expression of Developmentally Important Genes in Mouse Blastocysts

Background Recent researches reveal that manual puncturing of the trophectoderm of blastocyst before vitrification, increase the quality of embryo. However, in any of these studies, the importance of blastocoelic fluid and its impact on the formation of three cell lines is not mentioned. Therefore, in the present study, the effect of blastocoelic fluid reduction before vitrification on survival...

متن کامل

03-P059 A developmentally regulated two-step process generates a non-centrosomal microtubule network during tracheal morphogenesis in Drosophila

The control of cell morphology is important for shaping animals during development. Here we address the role of the Wnt/ Wingless signal transduction pathway and two of its target genes, vestigial and shotgun (encoding E-cadherin), in controlling the columnar shape of Drosophila wing disc cells. We show that clones of cells mutant for arrow (encoding an essential component of the Wingless signa...

متن کامل

Expression profile of developmentally important genes in pre- and peri-implantation goat embryos produced in vitro

Background Little is understood about the regulation of gene expression during early goat embryo development. This study investigated the expression profile of 19 genes, known to be critical for early embryo development in mouse and human, at five different stages of goat in vitro embryo development (oocyte, 8-16 cell, morula, day-7 blastocyst, and day 14 blastocyst). MaterialsAndMethods Stage-...

متن کامل

Antagonist activity of DWnt-4 and wingless in the Drosophila embryonic ventral ectoderm and in heterologous Xenopus assays

Wnt genes encode secreted signalling molecules involved in a number of basic developmental processes. In Drosophila, wingless and DWnt-4 are two physically clustered Wnt genes, which are transcribed in overlapping patterns during embryogenesis and, in several instances, are controlled by the same regulatory molecules. To address the question of the functional relationship of wingless and DWnt-4...

متن کامل

Osa-containing Brahma chromatin remodeling complexes are required for the repression of wingless target genes.

The Wingless signaling pathway directs many developmental processes in Drosophila by regulating the expression of specific downstream target genes. We report here that the product of the trithorax group gene osa is required to repress such genes in the absence of the Wingless signal. The Wingless-regulated genes nubbin, Distal-less, and decapentaplegic and a minimal enhancer from the Ultrabitho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Thorax

دوره 68 8  شماره 

صفحات  -

تاریخ انتشار 2013